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) Nomenclature
n normal boundary layer coordinate
13 streamwise boundary layer coordinate
f dimensionless stream function variable
S specified wall shear
N number of steps in the normal direction
M number of steps in the streamwise direction
Ly
P right hand side groups for spline correction
Qj equations containing known quantities from
) previous iteration or streamwise stations
Tj J
Aj 3
) Bj y 4 x 4 block tridiagonal coefficient matrices
Cj J
Rj column vector of known quantities
Zj solution correction vector
€ convergence criteria value
n iteration number
i streamwise grid location
3j normal grid location

All other quantities are defined in the text.
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I. Introduction

The object of the present study is the accurate numerical determination of
the pressure gradient distribution for specified wall shear in a laminar
boundary layer. This is known as the inverse problem. This procedure is
sometimes preferable to the standard problem, in which the pressure
distribution is prescribed and the body shear stress is determined by the
solution of the boundary layer equations.

One method of determining the pressure gradient distribution is the
mechul function scheme, developed by Cebeci and Keller [l]. This scheme
was found to be accurate and efficient for self-similar type flow problems.

For non-similar flow problems, however, this method exhibits a weak

numerical instability. The instability appears as a disturbance that
develops in the far field of the computational domain and propagates towards
the wall. As a result, the numerical solution is ultimately destroyed as

it is marched dowmstream.

The inverse problem requires the determination of a coefficient function,
the pressure gradient parameter, which satisfies an over-determined set of
boundary conditions that result when the wall shear is specified. The mechul
function scheme adds an extra differential equation for the pressure gradient
to the system of boundary layer equations. As a result, the system is no
longer over-determined, and the governing equations may be solved as an

extention of the standard problem,
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K This study reformulates the mechul function scheme as developed in Ref.

~ R

[1] in such a way that the numerical instability is eliminated, thus yielding

>

;: an accurate solution method. Whereas in Ref. [1], the Keller box scheme was
> used to discretize the differential equations, the new procedure applies
ot fourth order splines developed by Rubin and Khosla [3] to approximate the

&

A4

ks normal derivatives and three point backward differences for the streamwise
;b derivatives. This yields a fully implicit method which lends stability to the
I solution.
‘i' In the present work, the discretized, linearized system of equation:

N
ou :

- put into a standard block tridiagonal form. Lower—upper decomposition .od
t; to solve the resulting block matrix system with partial pivoting within tne

o«

)

o blocks to prevent the buildup of round-off errors. Reformulation of the i
:f governing equations became necessary with the discovery that the spline
) . techniques, applied to the original formulation in Ref. [1], yielded a

N

N

\j singular block matrix on the diagonal during forward substitution. By a

X

:j slight recasting of the differential equation governing the pressure gradient,
f o~ this singularity is removed in the matrix.

Ay
i:s This study considers the solution of both self-similar and non-similar
]

. laminar boundary layer problems. Falkner-Skan problems with positive and

-

a negative wall shear and two non-similar flow situations are computed.
o
K~

x
,j: 1I. Analysis

3N Governing Differential Equations

7% The governing equations in this problem are the two-dimensional boundary
X ‘
2 layer equations for incompressible laminar flow. In dimensinnless stream y
Y, function form, the boundary layer equation is written

N

3

o
-

v,

o

R R B B T R N S R
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f + ff + - f7) =2 f -f f
nnn nn 8(1 n) E(fn En nn E) (1)
where
T 14
fn =37 fE E -
The pressure gradient parameter, B , is given by
du
_ 28 e
8(e) = 5 a¢ (2)

where ue is the velocity at the edge of the boundary layer. The boundary
conditions for the computational domain, shown in Fig. 1, are identical

to those given in Ref. [1].

£(£,0) =fw(£) (3a)
£(5:0) = u () (30)
fn(E,nw) =1 . (3c)

For the problem considered here, the mass transfer and velocity at the wall

are taken to be zero. The quantity ne = nm(EJ is the location of the outer

edge of the boundary layer, which, for simplicity, is taken as constant for
this analysis. Equations (1) and (3) define the standard problem.

For the inverse problem, the wall shear is specified as

fnn(E,O) = 5(&) £E>0 . (4)

..........................................
..

.
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Equations (1), (3) and (4) lead to an over-determined system. To complete
the formulation of the mechul function scheme, the pressure gradient parameter

is written as
8(g) = 8(g,n) .

Then in Ref. [l] the following derivative condition is introduced:
38
— = > .
3 0 3 0 (%)

The pressure gradient parameter is thus determined by solving Egqs. (1) and
(5) together with boundary conditions (3) and (4).

For self-similar flows,

fg(i,n) =0 . (6)

Therefore, the boundary conditions and the pressure gradient are independent
of the streamwise coordinate. 1In this case, the differential equations

reduce to

2
+ + - = 7
f ff n 8(1 fn) 0 (7a)

8 =0 (7v)

yilelding a system of ordinary differential equations.

It was found during the present study that the original gradient parameter
condition, Eq. (5), used with the fourth order spline relations, leads to a
singular matrix when solving the resulting block tridiagonal system by
L-U decomposition., Using a constant normal stepsize in the spline Sl(a,o)

given in Ref. [3] yields a singular block matrix on the diagonal, thus

preventing the solution of the matrix, This problem became apparent in

ol

5¢?

the forward substitution step.

L)
Y

v e] @

(3R]
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- To eliminate this singularity, the pressure gradient parameter condition

.l/” .

;? was changed to
X )

L 2E.0  £50 . (8)
> an~
n'*‘
,$n‘ Then, the condition
NS
b,

“

(‘,\0 aB -

g - 0 £E>0 (5)
A
s
:}j is enforced at the wall with two point spline boundary conditions. Using the
\‘:\:
:&: alternate fourth order spline relation $2(4,0) from Ref. [3] produces a non-
e
! singular matrix for constant or varying stepsize while still forcing the

.\‘
e pressure gradient to be independent of n.

o
N Differential Equations in First Order Form
%. The governing differential equations, (1), are written in first order form
§¢ with the exception of Eq. (8):

.‘J-

fn =u (9a)

25

5‘

. u = T 9b
W n (9b)
‘ a
n3
A
= B =0 9¢c
:,'-. nn (9¢)
a:::

" v, = (1 - u®) - fr+ 28w, - ) . (9d)
-

H
e Then the boundary conditions are
4

>0
:', £(g,0) = 0 (10a)
WU
o
% u(g,0) =0 (10b)
2
l(:

ﬁ.

b |
2\ !
\ - e e Co e e
.7.-‘: -.'. -_‘- ..-\." L o ._ ~...;. .- <L ._.. . ; " .’ . . -.__._ ., . ..'_.‘. . . ._.._ _.- cre e L .‘._q‘




A e S LA C AL AR EAL L BLACHCUE LML AL LRLALSANL SANLIL MM LA A SASARAIASOAREDA A MOt S R
e
LN

{2

A -11- 4 May 1984
T KCK:GHH: 1hz

2
i 1(€,0) = s(&) (10c)
..\Q

RS

5 u(g,n ) =1 . (10d)
.I::'

I‘l

- Streamwise Discretization
‘\::'

‘N The governing differential equations are discretized using fourth order
"

5.‘-.

;:{ accurate splines in the normal direction and backward differences in the
e streamwise direction. For the £ derivatives, the following general backward
N

;3 difference formula for constant stepsize is used.

%

1

: = — |a .+ Db .t ¢ . 11
— G R [ogy 5 + o8y 5 * oByoy, 5] (b
l\‘f ’

!‘-“‘I
:2& : For 1 > 2, the three point second-order accurate version is used with

e
z . a-= %- , b==-1 , and ¢ =*% (11a)
' d

f& whereas, for the second downstream £ station (i = 2), the first-order accurate
"o

0 (two point) formula is used with

N

Al a=1 , b=-1 ,andec=0 . (11b)
:{: Examining the governing equations, only Eq. (9d) contains streamwise

- derivaties. Applying Eq. (l1) to the ug and fE derivatives yields

.

0
b (t) =8 (2, -1)-¢ .1
L) n 1,j i,jri,] i,ji,]

2 ’
e,
\ 2 2 2
. + + +

N3 g (3 g * by Y ey )

‘ U

)
i) . ¢

o - 2a, ,(af, T, , + bf T, . + cf T 12
< 1,9 (308 57,5 * PFeon 3Ty * Sfig g y) (2
%

A




A MARLRIANO AN AR N pla) S AR R % DA i i b S 2A DA DAL AL A W SN AU O T ITRIAS ST AT T ATeTenet -1
-12- 4 May 1984
KCK:GHH:1hz
where
o &
s 1,5 © B,
&N Normal Discretization
(SA)
;f Since first and second derivatives with respect to n occur in the
N
" equations, the splines S1(4,0) and SZ(A,O) are used. To apply the spline
:\- approximations in the normal direction, the following spline derivatives
\l
\]
\,- are defined:
o
£
e L = fn (13a)
é&
L%
¢ 2t = (13b)
"
. T
. ' L = Tn (13C)
4
281 B
. L= 8 (13d)
L
- . (13e)
nn
™ These definitions are then substituted into the governing equations.
Substituting definitions (13) into Eqs. (9) yields
’ £
- [} =u l4a)
$4 i :j i ’j (
-"‘
"
f~ u
2 =T 14b
= 1,1~ "1, (140)
§
LJ
y
%
%
»
Ya
i
-

Ny o1 ' - t -4,~\‘ \."," > \'-",,*-('- RN I AN o AT A At \.‘- R ‘ \_\\ vaan
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.3 =0 (lace)

+ bu

(144)

2 2 2
+ ai,j(aui ]) .

i i-1,j ¥ ®%i-2,j

¢
)

[/

qi»j-

From Ref. [3], the tridiagonal relation for 81(4,0) is, at a streamwise

A
h )

,
(g ;'n’ (A

station i,

X/

‘-

2

oy

LN

(4

B8+ (1+0)%8 + g

g =
j+1 3 -1 7

j-1

5

Py
e
<

-, where

124 7.7
H \ » L
'Aag}}aﬁf‘
Q
"
Q
Lde
il
t“:
=2
w | F
=

t
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,,
N,

]
'

g

and 2 is the first derivative spline approximation of (3g/dn)j. The

}:J- tridiagonal relation for 82(4,0) is given as
33
fx? 02 -ag-1 B 4 03 + 402 + 4o + 1 L8 + 1 + o - 02 L&
120 j+l 120 j 12 j-1

)

o
3:5 g

1 j*l 1+ ¢

WY = —— - R

: 2 =5 o 85 * 8y (16)
™ 3
3

) 2
%:’ where Lg is the second derivative spline approximation of (3 glaéz%.

"

f:: To eliminate the spline derivatives, Eqs. (l4a), (14b) and (14d) are
S
4;4 substituted into the S1(4,0) relation given by Eq. (15). The second

>

derivative condition, Eq. (1l4c), can be substituted into the S2(4,0)

A
By "y B
PO A

A

relation. This yields the following four tridiagonal relations

)
LY

(i subscript understood). All coefficients are given in Appendix A,

-

oZuj_l + oluj + uj+1 = c3fj_l + ohfj + oSfj+l (17a)

Nl O

oZTj_1 + alrj + Tj+1 = oBuj_1 + clouj + oSuj+1 (17b)

P

LA XA

oSBj_l + 078j + a6Bj+1 =0 (17¢)

1

Py

-2
> 4 I-(s.‘ a2l

»

.{ t«i

200

"t
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o
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02(c1 + B)uz - B + c2frt +‘ET;T]
j-1

+ ul[(cl + B)u2 - B+ c2ft + Eigr]

]

+ [(cl + B)u2 - B + c2ft + ESTT]
LY

- oZCAj_1 - olclsj - c4j+l . (174)

Linearization

The block tridiagonal relations given by Eq. (17) form a nonlinear

system relating (f,u,r,B)i’j. These equations are first linearized and

then solved using Newton's method. The Newton iterates are given by

(n+1) _ _(n) (n)

fi,j = fi,j + Gfi,j (18a)

uin;l) = uin; + 6u§n§ (18b)
(n+1) (n) (n)

Ti,j = Ti,j + 6T1’j (18¢c)
(n+1) (n) (n)

B0 T Byt By (184)

where the superscript indicates the iteration number. Equations (18) are
substituted into the tridiagonal relations at the (n+1)St iteration and

the quadratic and higher order terms are neglected., This allows the

AT AR

A A A N A A TS A
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equations to be solved for the unknown corrections, with all other terms
being known at iteration (n). Moving known quantities to the right hand
side, the linearized correction equations in block tridiagonal form at

streamwise station i are

- ;36fj_1 + 026u,_) - ;Adfj + olu, - ;566j+1 +dug =Ly (192)
- ;36uj_1 + oZGTj_l - ;46uj + olGTj - ;56uj+1 + Grj+l = Py (19b)
- ;868j_l - ;7ssj - ;668j+1 = Q (19¢)
2[ASE + Béu + Bjsr + 6ce]j_1 + ol[ASE + Béu + Ejar + éas]j

+ [;Gf + Bbu + ﬁjsr + 8cs]j+l = T, (19d)

A

where Aj, Bj’ Dj’ Ej and Fj are coefficients obtained from the linearization

of the equations (refer to Appendix A).
These block tridiagonal equations can then be written in the following

matrix form (i subscript understood)

szj_1 * Azt CiZyyy = Ry 2<j <N (20)

where

§f

z, = g: (21)

58
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#
g and Aj, By, Cj are 4 x 4 block matrices and Ry is the column vector of known
7
: quantities.
f
. Two Point Spline Relations at the Wall
The boundary conditions at the wall in correction form, at streamwise

!: station 1, are
| 551 =0 (22a)
g
” 6u1 =0 (22b)
¥ 61, =0 . (22¢)

One additional condition must be provided to close the system at the wall, A
b two point spiine boundary condition, given in Ref. [3], is used.

h h,
. 2 B B 2 B By _

. B, = 8, -3 (2, zl) * 3 (Lz Ll) =0 . (23)
5 This relation allows the original pressure gradient condition to be enforced

at the wall, From the governing equations,
! L8 -0
. J

and, enforcing the original gradient condition
) z? =0 ,
> yields the simple relationship
2 B, = B (24a)

2 or, in correction form
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682 = 681 . (24b)

: .
-
Q_‘ -
S
S5
\ “
>
A,

oy The linearized block system for the solution corrections at the wall can then
N

ﬁ- be written in the following matrix form:

2 A\Z; + CZ, = R (25)
o

5

.- with Zj defined by Eq. (21).

:"-

‘{‘ Two Point Spline Relation at the Outer Edge

".‘

ng The far field boundary condition is, at any 1,

%)

SN 6“N+1 = » (26)

Three additional conditions are required to close the system, The two point

el

f~$
‘ﬁl spline conditions are again applied. For one relation, the following 1s
used:
3 b b2
X _ _ N+l N+1 _
@ forl "IN T (g o)t (g o) =0 (272)
3 Differentiating Eq. (27a) with respect to n yields
e
N
Y 2
) h h
O N+1 N+1 T Ty _
- gt " Uy "7 (Tnep * ) Y (g~ )20 (27b)
&
> Differentiating once more gives
¥
o h2
- N+l . T T N+1 T T
2 el T Ty T T Uy P ) Y (g t L) =0
::;
Py ]
Y
&)
i

g0 M

i
¥
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AN Assuming the difference between the second order terms to be negligible
G compared to the lower order terms, the above equation simplifies to

-

Fox

}1‘ :’ Ah

S L N T =

S Tl = Ty 7 (fgey * &) =0 - (27¢)

Equations (27) provide the three additional conditions required for the far
field. These equations are linearized and solved for the correction terms as

before and then written in matrix form.

B =R . (28)

+
N+IZN AN+lZN+1 N+1

Solution of Block Tridiagonal Matrix Equation

The block tridiagonal system formed by Eqs. (20), (25) and (28) is solved
using standard lower-upper (LU) decomposition together wigh partial pivoting
within the 4 x 4 blocks to prevent the buildup of roundoff errors. A block
tridiagonal solver using subroutines developed by Blottner [4] which perform

the partial pivoting is used to solve the matrix equations for the correctilons

at each iteration.

Starting Solution

The Falkner-Skan self-similar equations are obtained by setting £ equal to

zero in Eqs. (1) and (8).

2
-— =
fnnn + ffnn + B(l fn] 0 (29a)

=0 . 29b
ff: Bnn (29b)
qu The boundary conditions given by Eqs. (3) and (4), with no dependence on &,

X2
tt'i are used., The solution of this ordinary differential equation with splines

. . D
....... o
AT et et e
S PR YRy Y Y. |




- e MRS A Al el seliCi i el Sl Al SRR AP A0 AP o S/ RN A/ IR N N
M S et Bt LA At A A pal A s A oA S ARG ACHCR AR DA S A A DR N ’ )

< -20~- 4 May 1984
s KCK:GHH: Lhz

O approximating all n derivatives is used as the starting solution for the

non—-similar case. The scheme is derived so that the Falkner-Skan solutions

{i; for positive and negative wall shear can also be computed.

AR

LAY

N As an initial guess for the starting solution, a fourth order Pohlhausen-
ANE type polynomial is used to approximate (f,u,T,B)i’j at £ = 0. The Pohlhausen
-é;ﬁ polynomial for the velocity is of the form

:‘~}
, u=bg + cg +dg + e (30)
O\

- N

' where

LARTIY
AN

1

l_-s

y u=un) ,
b nw

. and the constants b, ¢, d and e can be found by applying ;he boundary

~ conditions and the ordinary differential equation. The stream function and
q the shear can be found by integrating and differentiating Eq. (30)
respectively. By substituting into the differential equation, Eq. (29a),

an approximation for B is obtained in the form

iﬁi 6Sn_ - 12

) B = 7 . (31)
ot n

A ®

*

& Once the starting solution is determined, the second streamwise station
e

e must be treated in a special way for the non-similar flow case. With only
EC

I

0 one previous streamwise step known, two point backward differences are used
ﬁ:- to approximate the § derivatives. Past this station, three point backward
:~ ]
: differences are used. The solution profile at the last calculated station

ALY

is used as the first approximation at the new station.

12
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[ II1. Results and Discussion

Similar Flow Problem

. Computations for similar flows were performed for positive and negative

' wall shears. For all positive wall shears, the solutions were obtained
independently for a specific shear. For the negative wall shears, the

i sensitivity of the method to the initial guess required calculating solutions

consecutively for small steps 1n shear and using the previous solution profile

L4

‘j as an initial guess for the next profile. The solution process was begun for

g a zero wall shear, S = 0, and the shear was decremented by 0.01 or 0.05.

: Solution comparisons are made between the present reformulated scheme,

i the original mechul function formulation [1], and the nonlinear eigenvalue

33 scheme {2}, This method was developed by Keller and Cebeci before the mechul

kh . function scheme. The eigenvalue method solves the inverse problem by treating

3 the unknown pressure gradient as an eigenvalue. Then, two iteration

% procedures, an “"inner” and an "outer"” iteration, are performed. The inner

. iteration solves the governing equations for a standard problem assuming 8

z is known. This inner iteration is then used with Newton's method to determine

: the pressure gradient parameter using the variational equations in the outer .
; iteration procedure. The variational equations are the standard boundary s
E layer equations differentiated with respect to B. i
;& For positive wall shears computed with the reformulated scheme, a normal 'i
:: stepsize of An = 0.15 is used with ne = 6; for reverse flow solutions and "
- .
E separation (S = 0), An = 0.15 and ne, = 9 are used. The criteria used for

convergence is

ALt
N .
TN

- B(n+1) _ B(n) 8

€ < 107

“h .‘D ) .‘
LA

.

AN
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Cebeci and Keller applied a similar convergence test to the original scheme as

well as the eigenvalue scheme with e < 1074 [1,2].

oo e e Lo, .

The results of the self-similar flow calculations with positive wall

P
P

shear are given in Table 1. These results are compared with those of Smith

[5]. Comparison shows the values from the reformulated mechul function scheme

PSRN W

ala’a o

closely approach those of Smith. All cases converged quadratically. Tt

S

should be noted that the greater number of iterations required for convergence

e g &

with the reformulated scheme are the result of the present more severe
convergence criteria,

The results of the reverse flow computations are presented in Table II.
These results are compared with those of Stewartson [6]. Again, the agreement
is good. Here, the number of iterations decreases appreciably with the use of
consecutive calculations. Figure 2 shows examples of both positive and

negative wall shear velocity profiles.

Non-Similar Flow Problen

Non-similar flow computations were performed using two linear wall shear

distributions. The first case, given by
S(E) = 0.4696 (1 - &)

has a zero pressure gradient at £ = 0, indicating a flat plate flow. The

second case, given by

S(&) = 1.23259 (1 - &)

has a pressure gradient parameter of unity at £ = 0, indicating a stagnation
point. Both cases approach zero shear at § = 1, yielding separation., Both
cases were computed with values of ne, = 6 and ne = 9. For all non-similar

computations, a streamwise stepsize of Af = 0.05 was used, with An = 0,25,

L e N NRSTERS

e W I . AT R A “‘-'."'.2!.*~ .
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N

\-o

o The convergence criteria applied is identical to that used for the self-

%

- similar cases.

T

-at A comparison of results for the first case is given in Tables III and 1V.
.*i' Table 111 compares the results with those of Refs. [1} and [2]. The

::; agreement with the Richardson extrapolation results obtained from the

o,

;:f eigenvalue scheme values is quite good. The numerical instability experienced
s by the original formulation does not appear in the present method. 1t was
\

- found that with n, = 6, the solution would not converge at & stations near
l...Q
‘L:' separation, yet with ne, = 9, the solution would march through the separation
N

\‘-.

- point at £ = 1. Once past separation, however, the scheme quickly becomes
43} unstable and the solution does not converge. Table IV compares results for
o

{: Case 1 with ny = 6 and ne = 9.

“x

N A comparison of results for the second case is given in Tables V and VI,
‘ L

o In Table V, the results are compared with results from Ref. [2], since no
:{Z results are available for this case with the original mechul function
“:“ formulation. The agreement with the Richardson extrapolation is again very
X good. As with case one, the results could be obtained through separation only
! ;_:

:‘} with n, = 9. Table VI compares the results for the two values of n_,

-‘\-'

.\"

':E Figures 3 and 4 are plots the pressure gradient parameter as a function of
%3% € for both non-similar cases. The results are smooth, with a minimum

LA

LSS

:ﬁ: occurring just before separation for computations performed with n, = 9.
(SRS

‘-".

- A Note on Normal Stepsize

;}: For all numerical cases presented, the normal stepsize, An, is kept

{;} constant for reasons of comparison with Refs. [1] and [2]. Non-similar

P

oY,

L ) cases were computed, however, using a geometric progression for n, with

g

o

w:- “j+l/“j = 1,1. Using this geometric progression, both non-similar cases

\ -

%2

'.’.

\ L]

NG

L]

...::
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would proceed through separation with ney = 6, The results obtained are
identical with those produced with a constant stepsize and ne = 9. Using
the geometric progression also allowed the number of normal steps to be

halved without decreasing solution accuracy.

IV. Conclusion

An accurate, stable, and efficient method is developed to determine the
pressure gradient distribution on a body surface in a laminar boundary layer
flow with wall shear specified. The reformulated mechul function scheme
presented here does not exhibit the numerical instability experienced with
non-similar type flow problems in Ref. [1]. The method is fully implicit
and is applicable to Falkner-Skan as well as non-similar flow problems.
Reverse flow self-similar problems have also been computed but are found
to be very sensitive to the initial solution guess.

The reformulated scheme uses fourth order splines to approximate
derivatives in the normal direction and three point backward differences for
the streamwise derivatives, both to aid solution stability. Partial pivoting
is used within the 4 x 4 blocks resulting from the discretized, linearized
equations of motion. These modifications prevent the instability described in
Ref. [1].

The results for both similar and non-similar cases were found to be stable
and accurate with quadratic convergence consistently observed. It was found
that solution calculations would proceed through the separation point with
constant stepsize and Ne = 9, or with a geometric progression and ne = 6.
Although all solutions converged quadratically upstream of the separation
point, using a more accurate initial guess would decrease {teration counts

further.
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